

An assessment of the impacts of reducing air pollution from livestock farming in Hungary

Potori, Norbert – Garay, Róbert – Sávoly, János – Fogarasi, József

Economy versus the Environment – Competitiveness or Complementarity

Jachranka, 23-25 November, 2015

Outline

Background and research objective Focus points and assumptions CAPRI projections AKI projection methodology Modelling results (preliminary) Conclusions and discussion

Background and research objective

Review of the National Emission Ceilings (NEC) Directive^{*}

- rew national emission reduction commitments for 2020 and 2030
 - ☞ proposal based on the calculations by IIASA (⇒ CAPRI)
- considerable challenge to maintain the profitability and competitiveness of food production while enhancing the protection of the environment
- compliance requires investing at the farm level in new technologies and implementing new farming practices
- **F** influence on structural developments

Research objective

to project the development of livestock numbers and to assess the impacts of the reduction of air pollutant emissions by applying certain farming techniques in Hungary

* COM(2013) 920 final

SO₂ NH₃ CH₄ PM2.5 NO_x NMVOC

Focus points and assumptions

Agent-based simulation model*

- FADN data from individual farms
- agents maximize revenues

Focus points

- ൙ air pollutant: ammonia
 - 90-95% of agricultural origin
- action: covering manure stores
- P livestock sectors: dairy cows & slaughter pigs

Assumptions regarding the action

- baseline: CLE
- Scenario: no covered manure storage except for livestock farms with biogas production facilities
 - costs of covering calculated according to official construction standards and regulation (59/2008/FVM) on the size requirement of manure stores
- action and relevant additional costs taken into account from 2015 on

^{*} Potori, N., Kovács, M., Vásáry, V. (2013) The Common Agricultural Policy 2014-2020: an impact assessment of the new system of direct payments in Hungary, *Studies in Agricultural Economics*, no. 115, pp. 118-123.

Livestock density in the EU versus the NH₃ reduction ceilings proposed by the European Commission in 2013

Source: Eurostat and COM(2013) 920 final

Agrárgazdasági Kutató Intézet

CAPRI: projected development of the number of dairy cows^{*} in Hungary until 2030

Source: IIASA and Hungarian Central Statistical Office (2015 = 1 December, 2014) * Including dual purpose breeds

Agrárgazdasági Kutató Intézet

CAPRI: projected development of the number of pigs in Hungary until 2030

Source: IIASA and Hungarian Central Statistical Office (2015 = 1 December, 2014)

Agrárgazdasági Kutató Intézet

AKI projection methodology

Time frame

- 2015-2030
- ☞ base year = 2013 FADN data

Exogenous variables

- Central Statistical Office data
- **Gereich Construction and Series and Series**
- Prospects for agricultural markets & income in the EU 2014-2024 by the EU Commission

Policy assumptions

- **CAP direct payments 2015-2020**
- ational direct payments 2015-2020
- status quo after 2020

Method of projections

- dynamic cycle: 2015-2024
- Inear projections: 2024-2030

Projection process

Agrárgazdasági Kutató Intézet

AKI: projected development of the number of dairy cows^{*} in Hungary until 2030 versus CAPRI

Main drivers

400 *coupled support & national aid*

raw milk demand in RO, IT & CR

Source: IIASA, Hungarian Central Statistical Office (2015 = 1 December, 2014) and AKI calculations * Including dual purpose breeds

Agrárgazdasági Kutató Intézet

AKI: projected development of the number of pigs in Hungary until 2030 versus CAPRI

Source: IIASA, Hungarian Central Statistical Office (2015 = 1 December, 2014) and AKI calculations

Agrárgazdasági Kutató Intézet

Modelling results^{*}: changes in livestock numbers versus 2015

Agrárgazdasági Kutató Intézet

Modelling results^{*}: slowdown of growth in the number of pigs for slaughter by herd size in the 2020 scenario

Source: AKI calculations * Preliminary

Agrárgazdasági Kutató Intézet

Conclusions and discussion

CAPRI versus AKI baseline projections: contradicting results

- **proposed emission reduction ceilings may need to be reassessed**
- development of livestock numbers are indirectly 'locked in' these, thus legislation may have a distorting effect on the EU market
- flexibility measures may need to be considered to help livestock sectors adjust to internal and international market developments

AKI baseline versus AKI scenario: slowdown of growth

as demonstrated in the case of pig farming, different herd size categories could be impacted differently which may affect the development of the production structure

Not considered

- monitoring of compliance with ever stricter environmental standards puts additional administrative burden on farmers, thereby rendering production even more difficult
- decline in CAP support after 2020 may trigger further decrease in livestock numbers

CAPRI: projected development of the number of pigs in Poland until 2030

Source: IIASA and Polish Central Statistical Office (2015 = 1 December, 2014)

Agrárgazdasági Kutató Intézet

Dziękuję za uwagę!

www.aki.gov.hu

Agrárgazdasági Kutató Intézet